An exact upper bound for sums of element orders in non-cyclic finite groups
نویسندگان
چکیده
منابع مشابه
Zero Sums in Finite Cyclic Groups
Let Cn be the cyclic group of n elements, and let S = (a1, · · · , ak) be a sequence of elements in Cn. We say that S is a zero sequence if ∑k i=1 ai = 0 and that S is a minimal zero-sequence if S is a zero sequence and S contains no proper zero subsequence. In this paper we prove, among other results, that if S is a minimal zero sequence of elements in Cn and |S| ≥ n − [ 3 ] + 1, then there ex...
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملThe Number of Finite Groups Whose Element Orders is Given
The spectrum ω(G) of a finite group G is the set of element orders of G. If Ω is a non-empty subset of the set of natural numbers, h(Ω) stands for the number of isomorphism classes of finite groups G with ω(G) = Ω and put h(G) = h(ω(G)). We say that G is recognizable (by spectrum ω(G)) if h(G) = 1. The group G is almost recognizable (resp. nonrecognizable) if 1 < h(G) < ∞ (resp. h(G) = ∞). In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2018
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2017.07.015